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Hot-wire measurements were made simultaneously in two homogeneous ‘horizontal’
planes in the far-wake region of a cylinder. A technique developed using hot-wire
data to identify the spatial characteristics of the large-scale bulges at the interface
between the internal turbulent motions and the external irrotational flow was used to
unambiguously relate these outer intermittent bulges to the inner coherent structures.
It was found that a turbulent bulge is made up of a combination of a horseshoe
vortex (whose legs form one double-roller eddy) and the straining region present just
upstream of this structure. The approach also allowed the evaluation of the two most
prominent phenomenological models for the entrainment mechanism in the far-wake
region: the Kelvin–Helmholtz instability and Townsend’s growth–decay cycle. It was
found that the decaying and re-forming of the bulges and entrainment structures is
not likely to occur. Rather, the evidence is that the large-scale bulges remain coherent
for long streamwise distances in equilibrium with the overall similarity of the flow.

1. Introduction
Understanding the kinematics and dynamics of entrainment and mixing is import-

ant in many practical engineering situations such as the dispersion of contaminants
or combustion. In these applications, flows tend to be complex and many engineering
turbulence models used to predict them break down. The fundamental study of three-
dimensional turbulence structures and their related transfer processes in the far region
of a plane turbulent wake is relevant to these situations because entrainment and the
transfer of momentum, heat and mass that occur in free flows depend strongly on
the structure of the internal vortical motions and how these motions interact with the
external ‘irrotational’ flow field.

Turbulent mixing takes place in three stages. The first is the process of entrainment
whereby the exterior irrotational fluid is ingested by the interior rotational turbulent
flow. This process, sometimes called engulfment, involves the extension of the interface
separating the irrotational and rotational flow by large-scale turbulent motions.
Dimotakis (2000) refers to the second stage as ‘stirring’, where the interface between
the species being mixed grows at scales smaller than the large scales responsible for
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engulfing, but larger than the viscous scales. In the final stage, molecular mixing
smooths out the gradients of the different species.

Overall rates of entrainment and mixing are controlled by the large structures (e.g.
Townsend 1976; Bevilaqua & Lykoudis 1977) and, as such, are boundary- and initial-
condition dependent (Wygnanski, Champagne & Marasli 1986). There has been much
work focused on the identification of the bulges (e.g. Corrsin & Kistler 1955; Hedley
& Keffer 1974; LaRue & Libby 1976) and coherent structures (e.g. Mumford 1983;
Antonia et al. 1987; Ferré & Giralt 1989a, b). Extensive work has also been done
to define the geometry and phenomenology of folding of the interface, that is, the
stirring process (e.g. Ottino 1989; Sreenivasan 1991; Villermaux & Innocenti 1999;
Catrakis & Bond 2000).

Recent work has shown very interesting interactions between the large-scale en-
training eddies and the small-scale motions, particularly with regard to entraining and
mixing of passive scalars. It was traditionally argued (e.g. Townsend 1966) that the
largest eddies interacted with the next smaller size, these then with the next smaller
and so on, in an energy cascade. As discussed in Warhaft (2000), for example, a mean
temperature gradient aligned with diverging–converging separatrices (i.e. large-scale
motions) yields the ramp–cliff structures that are associated with the anisotropy of
the small scales of a passive scalar. Thus, there is a more direct interaction between
the large and small scales than previously thought.

There have been two phenomenological descriptions of the entrainment mechanism
in the literature, the most common being the roll-up due to Kelvin–Helmholtz (KH)
instability. This instability causes a vortex sheet to roll up (e.g. Prandtl & Tietjens 1934;
Sreenivasan, Ramshankar & Meneveau 1989; Caulfield & Peltier 2000), entrapping
external non-turbulent fluid all the way into the core of the vortex (e.g. see figure 4
in Sreenivasan et al. 1989) and yielding the well-known ‘cat’s eye’ streamline pattern.
This description has been used primarily to portray engulfment in the near and
intermediate wake regions where the vortex street is still reasonably strong and
periodic.

Townsend’s (1966, 1976) growth–decay model, illustrated on the cover of his book,
consists of a cycle of entrainment applicable in the far-wake region, which begins with
a quiescent period characterized by a relatively smooth interface in the large-scale
sense. This is followed by a period of growth of packets, which become the large
bulges that eventually overturn, engulfing a large amount of external fluid. As a result,
the wake approximately doubles its size by the end of this cycle. Once the overturning
is complete, the interface becomes quiescent again and the cycle begins again.

The growth–decay model is closely related to the KH instability. In both cases,
the engulfment structures originate out of a nearly smooth interface and are formed
because of the instability of the mean velocity profile. The major difference appears
to be that in Townsend’s model, when the structures overturn they are destroyed,
leading to the next quiescent period. This appears to be like a breaking wave, as
noted by Bevilaqua & Lykoudis (1977). Aside from this, the similarity between the
KH instability and the growth–decay cycle is striking.

In contrast to the KH instability mechanism and the growth–decay cycle, Bevilaqua
& Lykoudis (1977) proposed that rotational motions ‘sweep’ non-turbulent fluid into
the turbulent region. They proposed this mechanism based on experiments where they
injected dye into the external stream and observed how it was entrained. They also
observed that the large structures were long-lasting. Recently, Sreenivas & Prasad
(2000) reported that a similar type of mechanism occurs in the far field of plane jets
(although they gave no evidence of this). This appears to us more as a difference in
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Figure 1. The velocity maps in (a) the (x∗, y∗)-plane at z∗ = 0 for (u∗c , v∗c ), and (b) the (x∗, z∗)-
plane at y∗ = 1 for (u∗c , w∗c ), from Vernet et al. (1999). Contours are of the second invariant: the
yellow colours indicate regions where strain dominates while the blue colours indicate regions where
rotation does so. The lowest isocontours are for 5% of the maximum value of the second invariant.

degree than of mechanism. In the near wake, the Kármán vortices account for large
fractions of the total fluctuation energy and rotate relatively rapidly so entrained
fluid can get near the core of the vortex quickly, before it becomes fully turbulent. In
the far wake, however, the horseshoe vortices themselves account for much smaller
fractions of the total energy and do not rotate rapidly enough so that the entrainment
fluid can become turbulent before reaching the core (see also Vernet et al. 1999).

Vernet et al. (1999) identified the complete three-dimensional topology of the large-
scale structure in the far region of a cylinder wake. Figure 1 shows the ensemble-
averaged velocity fluctuation maps and the second invariant calculated from the data
measured by these authors. In this figure the flow is from left to right. The isosurfaces
of the second invariant, Q, of the coherent field

Q ≡ 1
2
(u2
c,i,j − uc,i,j uc,j,i) = − 1

2
uc,i,j uc,j,i = 1

2
(‖Ωc‖2 − ‖Sc‖2) (1)

were obtained from a triple decomposition (where c is not an index but denotes
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Figure 2. Definition sketch of the experimental set-up.

the coherent motions) to identify regions within the structure where rotation or
straining dominates. As indicated by Giralt & Ferré (1993), the well-known double-
roller structure (or pair of counter-rotating vortices) is simply a horizontal slice
through a horseshoe vortex near the wake half-width (i.e. y ∼ l0) as can be inferred
from figure 1(b). Grant’s (1958) mixing jets should be associated with the strong
outward velocities with negative streamwise fluctuations seen in figure 1(a). What is
particularly interesting is that there is a clear shear alignment of both the upstream
straining region (in yellow) and the rotational region (in blue). The downstream
straining region does not show the same alignment with the mean shear on its lower
edge. However, when a double decomposition is applied, as was done by Antonia,
Shah & Browne (1987), the shear alignment of the contours disappear and they are
all closer to the wake centreline. LaRue & Libby (1976) found that the upstream
edge of the bulges tend to be shear aligned while the downstream edge does not.
As a consequence, the possibility that the bulges are made up of these straining and
rotational regions deserves further investigation.

In this paper we present a conditional-averaging technique to identify the large-
scale turbulent bulges. Data obtained simultaneously in two homogenous horizontal
planes are used to position the (outer) bulges, along with the quiescent irrotational
zones, relative to the (inner) coherent structures. The details of the entrainment
mechanism are evaluated and clarified by examining the characteristics and topology
of the bulges and coherent structures simultaneously. These are then related to the
overall growth and similarity of the wake.

2. Details of experiments and analysis
2.1. Description of experiments

Measurements were made in a plane turbulent cylinder wake generated in the open
return wind tunnel of the Chemical Engineering Department at the Universitat Rovira
i Virgili in Tarragona. This facility has a test section 60× 60 cm square and 300 cm
long. The diameter of the cylinder, D, was 11.6 mm (aspect ratio of 40 and tunnel
blockage of 2.0%) while the free-stream velocity, U0, was 9 m s−1, so that the Reynolds
number was 6700. The cylinder was mounted through holes in the tunnel walls. The
free-stream turbulence intensity was less than 0.2%.

Figure 2 shows a sketch of the setup. A moveable rake of 4 X-wires was placed 170
diameters downstream of the cylinder to measure the (u, w) velocity components. This
rake could be moved between the centreline and y = l0, where l0 is the mean velocity
half-width. The probe spacing was ∆z = 0.33l0 in order to capture the large-scale
features of the inner-wake flow coherent structures. A second fixed rake of 8 normal
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wires was placed immediately above the X-wire rake near the half-intermittency point
(y = lh) in order to sense the interface between the turbulent and the irrotational flow
and measure the streamwise velocity components there. The probe spacing for the
normal wire rake was ∆z = 0.14l0, so that both rakes had the same spanwise extent.
The voltage signals from each anemometer were sampled at 5 kHz per channel for
40 s (∆t = 0.2 ms), low-pass filtered at 2 kHz, and stored on disk.

There are several additional points to note. First, the spatial coordinates are
normalized according to z∗ = z/l0, y

∗ = y/l0, and x∗ = −U0t/l0 (assuming Taylor’s
hypothesis) while velocities are normalized as u∗ = u/u0, v

∗ = v/u0 and w∗ = w/u0

where u0 is the maximum velocity defect. A prime ( ′ ) denotes an r.m.s. component,
a single overbar a time average and a double overbar a spatial average. Second, flow
is from left to right in all plots. Third, the mean velocity half-width length scale
was l0 = 42 mm, the half-intermittency point was located at y = lh = 1.65l0 and the
integral scale, L, calculated from the streamwise autocorrelation, was 3.2 ms (≈ 0.7l0,
assuming Taylor’s hypothesis). Finally, although the Reynolds number based on the
Taylor microscale, Reλ = u′λT/ν, was 110, both the turbulence and mixing are not
likely to be fully developed since ReD . 10 000 (Dimotakis 2000). This could have an
effect on the smaller scales of turbulence although it is not expected to have a large
effect at the scales examined in this work.

2.2. Decomposition and averaging techniques

Double and triple decompositions of the velocity field (e.g. Hussain 1983) have been
applied to identify coherent structures embedded in turbulent flows. In the present
work, the triple decomposition is used. The triple decomposition decomposes the
total instantaneous velocity, u, as the sum of the mean, U, the coherent, uc, and an
incoherent fluctuation, ur ,

ui(x, y, z, t) = Ui(x, y) + uc,i(x, y, z, t) + ur,i(x, y, z, t). (2)

The coherent velocity, uc, is the ensemble average of the difference between the total
and mean velocities, i.e. uc = 〈u − U〉 (e.g. Hussain 1983; Antonia et al. 1987). The
angular brackets indicate the ensemble average, the subscripts c and r identify the
coherent and incoherent components, and the index, i, represents the three coordinate
directions.

In the present work, the x-dependence has not been explicitly measured. Rather,
we have relied on Taylor’s hypothesis to convert the time-based measurements into
spatial x. The assumption of Taylor’s hypothesis implies that structures do not change
as they pass the set of probes. This also means that the explicit time dependence of
the structures is not a factor if all structures included in the average are roughly of
the same ‘age’.

2.3. Turbulence indicator function

The turbulence indicator function,

I(x, y, z, t) =

{
1, turbulent
0, otherwise,

(3)

is the time history of the turbulent–non-turbulent interface at position (x, y, z). Since
turbulence is characterized by random vorticity fluctuations, identification of the
interface separating turbulent and non-turbulent (irrotational) fluid domains would be
best accomplished via the instantaneous vorticity signal because there are effectively
zero levels of random vorticity in the free stream and non-zero levels within the
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Figure 3. Variation of the intermittency factor at x/D = 170.

turbulent flow. Obtaining the random vorticity signal, however, requires the use
of special multi-sensor probes, which in the present work would severely limit the
investigation of the instantaneous spatial distribution of the interface. Thus, the
identification of turbulent zones was made by using the streamwise velocity component
obtained from a normal wire, as has been done by numerous researchers (e.g. Corrsin
& Kistler 1995; Hedley & Keffer 1974).

Obtaining the turbulence indicator function from a velocity signal is not straight-
forward because velocity fluctuations can legitimately occur in both the irrotational
and the turbulent domains. Thus, an intermittently turbulent velocity signal needs to
be sensitized to the presence of turbulence so that the probability density functions of
the turbulent and non-turbulent regions are sufficiently separated (Kawall & Keffer
1980). Typically, detector functions are based on the square of the first or second time
derivative of the streamwise velocity. In the present work we have used the detector
function of Tabatabai, Kawall & Keffer (1989), namely, ((u − U0)(∂u/∂t))

2. Other
functions include that used by Hedley & Keffer (1974), namely (∂u/∂t)2 + (∂ν/∂t)2.
Kawall & Keffer (1980) discussed some of the additional difficulties with detector
functions. In the present work, a hold-time, Ts = 0.6 ms ≈ 5.4 mm (assuming Taylor’s
hypothesis; cf. probe spacing of 6.0 mm) was applied. Thus, the difference in the time
and spatial resolution is small. This is consistent with the low-pass filter frequency of
2 kHz, which translates, assuming Taylor’s hypothesis, to 4.5 mm and with the sensor
length of 1.25 mm. However, the hold-time is about one order of magnitude larger
than the Kolmogorov scale, η.

The intermittency factor, I(x, y, z) is the time-average of I(x, y, z, t) and is shown for
the present flow in figure 3. The turbulence burst rate, f̄, is defined to be the average
number of transitions from zero to unity per unit time,

f̄(x, y) =
B

T
, (4)

where B is the total number of zero to unity transitions over time T . Twice the value
of the turbulence burst rate represents the average number of times that the interface
passes the probe per unit time. The average turbulent and non-turbulent zone lengths
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Figure 4. A segment of the time series of the turbulence indicator function from the eight normal
wires in the (x∗, z∗)-plane at y∗ = 1.7.

from a single sensor at a single location are defined to be, respectively,

zt(x, y) =
1

B

B∑
i=1

(zt)i =
I(x, y)

f̄(x, y)
, zp(x, y) =

1− I(x, y)

f̄(x, y)
. (5)

3. Identification of large-scale bulges and non-turbulent zones
3.1. Identification technique

The time series of the turbulence indicator functions obtained from the eight normal
wires at y = 1.7l0 ∼ lh were examined. Figure 4 depicts a typical segment of these
time series containing a large-scale bulge. The white zones indicate turbulent flow and
the black zones indicate non-turbulent flow. It can be observed that there are a few
non-turbulent ‘patches’ surrounded by turbulent flow, implying three-dimensionality
of the interface at the downstream end. In addition, at the upstream end of the figure,
the interface is generally observed to be continuous, but it undulates significantly.
One implicit assumption that should be noted in the plotting of figure 4 is that when
two adjacent data points indicated turbulent flow, the spatial locations between the
two were assumed to be turbulent also.

Difficulty in the identification of bulges arises if the bulges are assumed to contain
any sort of ‘porosity’, i.e. locations where the intermittency function is zero, indicating
the presence of non-turbulent fluid. Since this is the case, as depicted in figure 4
(see also figure 4 in Sreenivasan et al. 1989), a threshold is required to determine
whether or not any given ‘event’ is a bulge when identification is performed ‘by eye’
or automatically. Obviously, small-scale interface undulations are neglected with this
approach since this work is not concerned with small-scale measures of the interface
(e.g. fractal dimensions).

Several distributions of intermittency occur when sensing the interface with a
discrete number of probes. These have to be considered in order to set the appropriate
threshold for the turbulence indicator function in the space between adjacent probes.
First, if two adjacent probes simultaneously yield long contiguous periods of rotational
flow, the only assumption to be made is whether the intervening space is also
rotational. A threshold close to unity could be applied in this case. Second, the adjacent
probes could yield non-contiguous series of shorter bursts. Without continuous spatial
information between the probes one is left to infer the significance of this situation.
Such a scenario exists in figure 4 near the downstream end, where by observing the
signals from all eight sensors together, one concludes that the different bursts are part
of the longer contiguous bulge located in the middle of the figure. In this case, it is
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Bulges Quiescent zones
Fraction of flow (%) 41.9 35.1
Fraction of I (%) 74.2 3.5
Fraction of ū2 (%) 87.2 3.2
Fraction of (∂u/∂t)2 (%) 83.9 3.8

Table 1. Statistics pertaining to the turbulent bulges and irrotational zones.

apparent that the threshold must be less than unity. Of course, as the quiescent zones
become longer and the bursts shorter, the likelihood that they are part of the same
bulge diminishes. Clearly, the threshold should also be higher than the local value of
I for the approach to have any significance.

Based on these considerations, a technique utilizing a spatially averaged intermit-
tency was developed. In particular, two spatial averages were used: one of a larger
scale to identify when there is a large-scale bulge present,

Ils(x, y, z, t) =
1

nlsnz

nls∑
i=1

nz∑
k=1

(Ii,k(x, y, z, t)) (6)

and another of a smaller scale to determine the approximate location of the edge
of the bulge (with Iss and nss replacing Ils and nls in (6)). Here, Ils is the large-scale
spatially averaged intermittency factor, nls is the number of data points used in time
(approximating the streamwise direction) and nz is the number of probes used in
the spanwise direction. Iss and nss are defined as above, but are of a smaller scale,
characteristic of the size of the ‘porous’ edges of the bulges.

As described above, it is assumed that there is a large-scale bulge present when Ils
is near unity and that a quiescent (irrotational) region is present when Ils approaches
zero. We thus use Ils to determine when a bulge is present, with a threshold set to an
appropriate value. In this case, the threshold used in the determination of the bulges
was that the peak value of Ils was greater than 0.70 (= 1.7I) within the bulge. In
order to identify the front and back edges of the bulges the smaller-scale spatially
averaged intermittency was used. In particular, once Iss < 0.30, it was assumed that
the edge had been identified. It was found that the actual value of nls (= 19 ∼ 1.2L)
was not critical as long as it was chosen to represent the smallest of the large-scale
bulges but was not so large that Ils approached the global average at the particular
lateral location. We used nss = 3 (∼ 0.2L).

3.2. Statistics of identified bulges and non-turbulent zones

Using the technique described above, turbulent bulges and quiescent regions were
identified with the normal-wire data measured at y∗ = 1.7 (where I = 0.42). It was
found that 42% of the flow was classified as being bulges of a size greater than 1.2L,
while 35% of the flow was classified as irrotational. The remaining 23% of the flow
was unclassified. This could be due to bulges which were only partially aligned with
the sensors. Table 1 gives additional statistics relating to these regions showing that
the identified bulges captured most of the intermittency and turbulence energy. In
contrast, the non-turbulent zones account for very little of the turbulence energy, as
expected. Both results indicate that the general classification is good. Interestingly,
the fraction of flow classified as ‘bulges’ is similar to the fraction of the flow occupied
by double rollers (e.g. Giralt & Ferré 1993; Vernet et al. 1999).
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Figure 5. Size distribution of large bulges (———) and non-turbulent zone (–– - –– -) as identified
with the bulge identification technique. The distribution of bulges obtained with the single-wire
technique (- - -) is also included.

Figure 5 depicts the distribution of bulges and non-turbulent zones by size. The
average bulge size near the half-intermittency point is about x∗ = 2.1. Comparing
the present bulge identification technique with that from single-sensor data reported
previously (e.g. Kawall & Keffer 1979) shows that the two approaches yield vastly
different results. In earlier work it was incorrectly assumed that the turbulence burst
rate from a single sensor was an indication of the number of bulges passing the probe
per unit time, with each square wave of the turbulence indicator function defining
a bulge. With the present data, this single wire approach yields an average bulge
size of about x∗ = 0.4 (∼ 0.6L), which is about 20% of the size determined by the
multi-sensor technique. This is due to the fact that the indicator function, I , from a
single probe is sensitive to undulations of the interface from the largest scales down to
those of the size of the sensor measuring volume. Since the interface surface is fractal
(Sreenivasan et al. 1989), the single-sensor approach will overestimate the number
of bulges, being skewed to the smaller scales. The number of large bulges is also
underestimated for the same reason.

The number of bulges and non-turbulent zones longer than about x∗ = 1.8 is
equal while for shorter lengths many more non-turbulent zones were identified,
especially for x∗ < 1.5. To investigate this further, a y∗ location slightly closer to
the wake centreline was examined and it was observed that this situation reversed,
consistent with the single-probe results of Kawall & Keffer (1979), until roughly
x∗ = 1. It was also observed that for x∗ = 1, many more non-turbulent zones
were identified. If the smaller bulges can be associated with bulges that have not
emerged as far from the fully turbulent core, it could be that these bulges have less
‘solidity’ and are not identified as often as the non-turbulent zones with the current
technique.

As a final comment regarding figure 5, we note that this distribution of bulge sizes
and non-turbulent zones should not be fractal since all of the identified events are of
a size L or larger. Thus, from this point of view, they should have a fractal dimension
similar to the projected area (Sreenivasan et al. 1989; Catrakis & Bond 2000).
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3.3. Conditional averages of bulges and non-turbulent zones

Once the bulges and quiescent zones were classified, they were grouped according
to size and conditional statistics were obtained. The average bulge size was found
to be x∗ = 2.1, consistent with earlier pattern recognition results. Figure 6 depicts
the spatially averaged streamwise velocity fluctuation, uc, as a function of bulge
size, conditioned by I = 1 and normalized by the local r.m.s., u′, at y∗ = 1.7. The
conditioned mean-square velocity fluctuation is also shown in this figure. For small
to average bulges, uc is positive, consistent with the rotational flow (3.4 < x∗ < 4.2) at
y∗ = 1.7 in figure 1(a). For larger bulges, uc becomes increasingly negative. The energy

associated with the bulges, 〈u2〉/(u′)2, also grows rapidly with bulge size and bulges

larger than about x∗ = 3 have a value of 〈u2〉/(u′)2 > 3.0. In contrast, the quiescent
zones are very ‘quiet’, as expected. Values of uc/u

′ conditioned on I = 0 do not vary

with zone size and are typically −0.09 (not shown). The typical value of 〈u2〉/(u′)2 is
0.08.

Figures 7–9 show a sample of the results obtained for bulges and non-turbulent
zones with streamwise extents of x∗ = 1.7, 3.0 and 4.2, respectively. These three figures
include the isocontours of uc, obtained at y∗ = 1.7, and the vectors of (uc, wc) at y∗ = 1.
It must be emphasized that these are the average motions occurring simultaneously
in time, but physically separated in the lateral direction by 0.7l0 (1.2L).

Figure 7 depicts the velocity distributions pertaining to bulges and non-turbulent
zones of length x∗ = 1.7. The bulges (figure 7a) have primarily positive veloc-
ity fluctuations at y∗ = 1.7 as indicated by figure 6. Corresponding to these outer
motions, the inner motions at y∗ = 1 have primarily uc < 0, not unlike the region
between the two rollers of the horseshoe structure (figure 1). These observations
indicate that the motions in the fully turbulent core of the wake associated with outer
bulges are the same as those that occur in the mixing jet region at the centre of the
double-roller (horseshoe) structure. These motions are well-correlated with outward
lateral velocity fluctuations. This is not surprising since it has long been expected that
the double-roller portion of the coherent structure forms the base of the turbulent
bulges (e.g. Ferré et al. 1990; Giralt & Ferré 1993; Kopp, Kawall & Keffer 1995).

Figure 7(b) shows the non-turbulent regions. It is observed that the outer velocity
is nearly equal to the local mean velocity since uc is nearly zero at y∗ = 1.7. More
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importantly, it is observed that there are positive values of uc within the turbulent
core at y∗ = 1.0. Comparing figures 1(b) and 7(b) we see that the quiescent zones are
similar to either the outer spanwise edges of the double-roller structure or to the back
of the double-roller structure, just upstream of the saddle point.

Figures 8 and 9 show the ensemble-averaged velocity fluctuations uc measured
at y∗ = 1.7 and (uc, wc) measured at y∗ = 1 for bulges and non-turbulent zones of
streamwise extent x∗ = 3.0 and 4.2, respectively. The uc contours indicate that there
are small, slightly positive velocity fluctuations at the leading edge of the bulge.
Approximately 1.5l0 to 2.5l0 upstream, negative streamwise fluctuations of relatively
large magnitude are observed. Further upstream, towards the trailing edge of the
bulge, the magnitude of uc is near zero, once again. The inner motions associated
with the outer uc contours are similar to those in figure 7(b), and are dominated by
negative values of uc. These motions have the appearance of the mixing jet motions in
figure 1(b). The non-turbulent zone results are presented in figures 8(b) and 9(b). The
outer values of uc are close to zero, as discussed above. The inner motions (y∗ = 1)



60 G. A. Kopp, F. Giralt and J. F. Keffer

1.0

0.8

0.6

0.4

0.2

0

–0.2

(b)
z

0 0.5 1.0 1.5
x

0.7
0.5
0.3
0.1
–0.1
–0.3
–0.7

T

2.0 2.5 3.0

1.0

0.8

0.6

0.4

0.2

0

–0.2

(a)
z

0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 8. As figure 7 but pertaining to events of length x∗ = 3.0.

0.8

0.4

0

(b)
z

0 0.5 1.0 1.5
x

1.0
0.5
0.25
0
–0.25
–0.5
–1.0
–1.5
–2.0

T

2.0 2.5 3.0 3.5 4.0

1.2

0.8

0.4

0

(a)z

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 9. As figure 7 but pertaining to events of length x∗ = 4.2.



Entrainment vortices and bulges in a plane turbulent wake 61

are much like those in figure 7(b) where positive values of uc are observed, consistent
with the outer portions of the double-roller structure.

3.4. How the bulges and coherent structures fit together

It is interesting to compare the average bulge size (x∗ = 2.1) with the average size
of the coherent structures depicted in figure 1. If one examines the (x∗, y∗)-plane
at y∗ = 1.7, it is clear that the size of the straining plus rotational region is about
x∗ = 1.8 in length. Recall that these coherent motions were identified via hotter-
to-colder temperature transitions so that the straining region and rotational region
are within the hotter fluid while colder fluid is located just upstream of the saddle
points. Therefore, based on the results presented so far, it is apparent that both the
straining and rotational portions of the coherent structures form the bulges. This
result is consistent with the work on the turbulent–non-turbulent interface by LaRue
& Libby (1976). These authors found that the upstream edge of the bulge was shear
aligned with an angle to the horizontal (i.e. in the x-direction) of 48◦. The slope of
the straining region in the structure identified by Vernet et al. (1999) is similar, as can
be observed in figure 1. LaRue & Libby also found evidence of overturning of the
downstream face of the bulge with an average angle to the x-coordinate (downstream)
direction of 114◦. This angle is also consistent with the present coherent structure,
although it is difficult to estimate its slope from figure 1 since it is continuously
changing in y. Thus, it can be concluded that the horseshoe vortex structure, plus the
upstream and downstream straining regions, are the turbulent bulges.

The results of Ferré et al. (1990) show that the region near the saddle point at the
upstream end of the bulge and the mixing jet has the largest fine-scale activity. In
contrast, the outer spanwise edges and the region upstream of the mixing jet have
little fine-scale activity, while the downstream straining region has ‘average’ fine-scale
activity. In other words, it is turbulent but corresponds to more recently entrained
fluid compared to the ‘older’ turbulence of the fluid motion emerging from below the
upstream straining region in the mixing jet.

Figure 10 shows an idealized sketch of the prototypical (average) bulge overlaid
on the motions associated with the inner coherent structure. Note that for y∗ . 1.0
the wake is fully turbulent (I ≈ 1.0; see figure 3) and the bulges protrude above
this point, as indicated in the sketch. The bulges are made up of the shear-aligned
straining region (in yellow) and rotational region (in blue) at the top of the structure,
with the slopes of the interface being consistent with the analysis of LaRue & Libby
(1976). Entrainment into the wake occurs at the downstream end of the bulge where
fluid is ‘swept’ into the wake and coherent structure, in a way described by Bevilaqua
& Lykoudis (1977). The ‘randomness’ associated with this process allows the coherent
motions to extract energy from the entrained fluid, as indicated by the negative
isocontours of the production of incoherent turbulence by the coherent motions.
These negative production contours, obtained by Vernet et al. (1999), overlap with
the lower (or downstream) straining region, as indicated in the sketch. At the same
time, turbulent fluid is ejected from the core of the wake outwards by the motions
induced by the horseshoe vortex. Incoherent turbulence is produced by these motions
at the back of the bulge in the upstream straining region, which eventually turns over
with the newly entrained fluid at the front.

3.5. Velocity profiles

Figure 11 shows the mean velocity profiles associated with the bulges and non-
turbulent zones. These profiles were obtained by averaging the values 〈u∗〉 over x∗
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and z∗ for a given y∗. Several features can be observed in figure 11. First, it is
clear that there is always about the same level of mean shear since the different
mean profiles are all approximately parallel. The largest velocities are associated with
the non-turbulent zones while the lowest velocities are associated with the largest
bulges. These profiles are consistent with the mean velocity profiles associated with
the horseshoe structures reported by Vernet et al. (1999). The mixing jet portion in
the centre of the horseshoe structure has the largest defect, consistent with the profiles
for the bulges. The outer regions (i.e. |z∗| > 1.0), with positive streamwise velocity
fluctuations, are consistent with the non-turbulent zones. Since the turbulence intensity
is relatively small compared to the mean defect, it is logical that approximately the
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same mean shear is always present. From this perspective, the bulges and coherent
structures can be viewed as perturbations from the mean, consistent with the concept
of the triple decomposition used in this work.

Phillips (1955) developed a theory for the irrotational velocity fluctuations outside
the wake, which has been experimentally validated by several authors (e.g. Fabris
1979; Antonia et al. 1987). The main predictions of Phillips’ theory that could be
evaluated experimentally, according to Antonia et al. (1987), are that the mean-square
value of the velocity fluctuations should vary as (y − y0)

−4 outside the interface and
that v′2 = u′2 + w′2. These, and other consequences of Phillips’ work, were validated
both in the region outside of the wake where I = 0 and for the non-turbulent zones
within the wake where I = 0. Perhaps the most interesting aspect of the work of
Antonia et al. (1987) in relation to the current study is that the organized motions
outside the wake, which are induced by the coherent motions within the turbulent
wake, were examined. These motions too, followed Phillips’ theory.

The present experiments were not designed to evaluate Phillips’ theory. However,
it is interesting to examine the present work in the light of this theory and the results
obtained by Antonia and co-workers. To this end, the results obtained by Vernet
et al. (1999) were re-examined. In particular, the coherent motions (e.g. figure 1)
were re-plotted in order to examine the theory. Strictly speaking, these results should
have been conditioned on I = 0, but since the topology of the bulges relative to the
coherent motions is now known, this was not done. Figure 12 shows the results for
several locations within, and outside, the horseshoe structure. For points outside the
bulge where uc > 0, it appears that the quantity

u2
c + w2

c

v2
c

− 1 (7)

is asymptotically approaching zero, as required by the theory. We also suspect that,
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had the results been conditioned on I = 0, the results would be clearer. In contrast,
for locations within the mixing jet portion of the structure, this does not appear to
occur. Similarly, figure 12(b) shows that u2

c fluctuations vary as (y− y0)
−4 outside the

bulge area (as marked in figure 10) while those inside it do not follow the trend.
Thus, on the whole, the current analysis is consistent with Phillips’ theory.

4. Entrainment and bulge time scales
Pope (2000) defines the entrainment time scale for a round jet as

τm =
ṁ

Uc(dṁ/dx)
, (8)

where ṁ is the mass flow rate. In the present case we are concerned with the increase
in volume of turbulent fluid, not the mass flow rate; however the resulting equation is
analogous. The quantity of turbulent fluid passing a streamwise location in the flow
per unit width is given by

µ =

∫ ∞
−∞
I dy = lh

∫ ∞
−∞
I dy∗ = I1lh. (9)
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Then, the analogous entrainment time scale for wakes can be written as

τm =
µ

U0(dµ/dx)
. (10)

For round jets there is only a single velocity scale, while for small-deficit plane wakes
two velocity scales have to be considered: the free-stream velocity, U0, which is the
bulk convection speed; and the maximum velocity defect, u0, which is the velocity
scale normally used for analyses of self-preservation. From a global point of view, the
free-stream velocity is the appropriate choice for entrainment (for the same reason as
this velocity is used to convert the time coordinate into the quasi-spatial x-coordinate
using Taylor’s hypothesis).

Under self-preserving wake flow conditions

l0 = Cl (x− x0)
1/2, u0 = Cu (x− x0)

−1/2. (11)

The combination of (9), (10) and (11) with lh/l0 ∼ 1.65 yields

τm =
2

U0

(x− x0). (12)

The large-scale structures in a wake scale with the mean velocity half-width, l0,
and the maximum velocity defect, u0, according to Ferré & Giralt (1989a). Thus, the
application of the eddy time scale proposed by Tennekes & Lumley (1972) to the
wake flow yields

τm

τ0

=
2

U0

Cu

Cl
∼ 10, (13)

with Cu = 1.63 and Cl = 0.3 (see Sreenivasan et al. 1989). Thus, the time scale of
entrainment is one order of magnitude larger than the nominal eddy time scale.
This implies that one should observe several eddies forming and breaking up as one
watches the wake grow (say, through a smoke visualization). However, this is not the
case, since wakes (and the other fully developed free shear flows) appear to be frozen
over large streamwise distances. Therefore, it is worth revisiting the eddy time scale.
In fact, the actual scale of eddies is about l0 (figure 1) while a better velocity scale
would be 0.1u0, since u′/u0 ∼ 0.3 and uc/u

′ ∼ 0.3 (see figure 4 in Vernet et al. 1999
and § 6). This leads to a new time scale

τeddy ∼ l0

0.1u0

= 10
Cl

Cu
(x− x0) (14)

so that
τm

τeddy
∼ 1

5

Cu

Cl

1

U0

∼ 1. (15)

This is consistent with both observations of the growth of wakes via flow visualization
(where wakes appear frozen over long streamwise distances with the bulges emerging
like ‘mushrooms’) and also with the fact that the turbulent velocity fluctuations can be
viewed as a perturbation to the mean velocity field. This implies that the large-scale
eddies are long-lived, consistent with the mechanism of entrainment.

5. The entrainment mechanism in the far wake
If the entrainment mechanism in the far region is related to the KH instability,

then it is also connected to the origin of the far-wake structures. This latter topic
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has been a contentious issue in the literature with two points of view put forward:
the far-wake structures (i) being formed via the KH instability which re-asserts itself
after the Kármán vortices decay and disappear (e.g. Cimbala, Nagib & Roshko
1988), or (ii) originating in the near wake, evolving directly from the shed vortices
(e.g. Hussain & Hayakawa 1987). Interestingly, Wygnanski et al. (1986) propose a
solution, indicating that the perturbations required for the instability mechanism may
be the structures themselves. In any case, the present results will now be discussed to
determine compatibility with the KH instability.

5.1. Stage 1 – growth

As described earlier, both the KH instability and Townsend’s growth–decay cycle
begin with a relatively thin wake. In terms of the present work, this should correspond
to the relatively long non-turbulent zones detected at the outer probes (y∗ = 1.7),
with turbulent flow below. Since the inner turbulent flow is ‘older’ and relatively
well-mixed, it should travel on average at about the local mean velocity since the flow
would be structureless, or have structures without preferred alignment. (However,
Townsend (1976) indicates that the double rollers are part of the ‘main turbulent
motion’ which exists below the (smooth) interface. This structure would also lead to
spatially averaged streamwise velocity fluctuations close to zero, and a Reynolds shear
stress due to their inclination.) The outer flow should be travelling nearly at the free-
stream speed which implies positive streamwise fluctuations for say 1.5 . y∗ . 2.0.
This scenario does not agree with the present experiments. Figures 8 and 9 show that
the streamwise fluctuations in the outer region (y∗ = 1.7) are nearly zero or slightly
negative while positive streamwise fluctuations occur in the inner region (y∗ = 1.0).
Ferré et al. (1990) and Vernet et al. (1999) showed that these positive streamwise
fluctuations are associated with less-fine-scale turbulence and, therefore, relatively
‘newer’ wake fluid. Thus, the long non-turbulent zones do not seem to be associated
with the initial stages of the KH instability or the growth–decay cycle. Given the
similarity of the velocity profiles (figure 7) and ensemble-averaged velocities with the
outer portion of the double rollers (cf. figure 1b for |z∗| > 1.0), it appears that the long
irrotational zones are part of the motions associated with the double roller/horseshoe.

5.2. Stage 2 – overturning

In the next stages of the KH instability and the growth–decay cycle there is growth
of the outer bulges, which roll up (or turn over) with entrainment ensuing. This stage
is consistent with the results described in detail in § 3 and summarized by figure 10.
The question arises as to whether the turning over is like the well-known ‘cat’s eye’
(e.g. see figure 4 in Sreenivasan et al. 1989) or like the ‘sweeping in’ described by
Bevilaqua & Lykoudis (1977) with their flow visualization. The difference between
these two descriptions appears to be more of degree than of physics, as discussed in
the introduction.

In either case, it appears that the structures are maintained for long streamwise ex-
tents, as observed by Bevilaqua & Lykoudis (1977), for several reasons beyond those
given in § 4. Wygnanski et al. (1986) suggested that the perturbation required for
instability was the structures themselves. This provided the fundamental mechanism
for how the initial conditions at the wake generator are propagated into the far wake.
This is also consistent with two additional factors. First, turbulence levels in the far
field are rather low compared to the maximum defect. For example, the maximum
root-mean-square (r.m.s.) streamwise velocity is about 30% of the maximum mean de-
fect (Townsend 1976). Given that peak coherent velocity fluctuations associated with
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the coherent structures are usually about twice the r.m.s., there is always a significant
velocity defect profile present even if it is not precisely similar to the shape of the mean
velocity profile (figure 7). This is consistent with the far-wake structures being pertur-
bations from the mean. Nevertheless, there are some difficulties with this argument, as
put forward by Vernet et al. (1999), since the mean shear should pull apart these struc-
tures rather rapidly. We suspect that the continual entrainment of new fluid along with
the long time scales of the entrainment eddies prevents this by allowing the structures
to come into equilibrium with the conditions present at the new location where they
have been advected by extracting energy from the newly entrained, faster moving fluid.

5.3. Stage 3 – filling

The growth–decay cycle suggests that the troughs are filled in and the wake returns
to the quiescent stage after the bulges have overturned, while it has approximately
doubled in width according to Townsend (1976). In the present work, this would
imply that all probes are imbedded in turbulent flow and long bulges would be
identified. One would expect that the motions observed in this case would be like the
inner motions for the first-stage quiescent period when long non-turbulent zones are
identified. This, in fact, does not occur. For long bulges, the inner motions at y∗ = 1.0
have strong negative streamwise fluctuations in contrast to the positive streamwise
fluctuations for the inner motions when long non-turbulent zones are identified. Thus,
no evidence of the filling-quiescent stage is found in the present work.

5.4. Discussion

Townsend (1979) and Ferré & Giralt (1989a) both discussed the grouping of the
large-scale eddies within the far region of a turbulent wake. Townsend (1979) ob-
served groups of about three while Ferré & Giralt found the groupings to be more
random since there was no preferred spanwise location for the vortices. Thus, if the
bulge/entrainment eddy locations are random in the spanwise direction (as implied
by mean two-dimensionality of the flow), they could align occasionally to form very
long bulges with engulfment only occurring at the leading eddy, as sketched by Ferré
et al. (1990). This would lead to negative streamwise velocity fluctuations in the core,
consistent with those in the mixing jet region. If the horseshoe vortices were all exactly
the same size and strength and had precisely the same lateral location, one would
expect distinct peaks in the size distribution depicted in figure 5 corresponding to
groups of 1, 2, 3, . . . , n bulges in a row. The random nature of the size, strength and
location variables (with a definable mean) is consistent with the distribution given in
figure 5. Yao & Paschal (1994) show PIV images of the wake of an airfoil where large
changes in the vortex location are observed. In particular, they show a large bulge
that has emerged significantly from the centre of the wake and looks like that in our
figure 1. Thus, the long bulges are most likely due to structures that have emerged
much further from the centreline and also to several structures occurring sequentially
in a group, much like Kim & Adrian’s (1999) ‘very large scale motions’ observed in
turbulent boundary layers.

6. Propagation velocities
Corrsin & Kistler (1955) examined the propagation velocity of the turbulent–non-

turbulent interface and found it to be the Kolmogorov velocity. This velocity, together
with the true area of the interface, allows the calculation of the momentum flux across
the wake boundary (see Sreenivasan et al. 1989). In contrast, Townsend (1976), Turner
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(1986), Sreenivasan et al. (1989) and others have looked at the propagation speed from
the global momentum balance point of view and estimated entrainment velocities to
be proportional to the velocity scale, in this case u0. Turner (1986) examined the
implications of this ‘entrainment hypothesis’. The entrainment velocity is typically
defined as

Ve =
d

dx

∫ δ

−δ
U dy, (16)

which clearly depends on the similarity of the whole flow. Thus, it is interesting to
relate a typical velocity associated with the large eddies with Ve.

Figure 5 and table 1 both show that the contribution to the turbulence intensities
at the outer (intermittent) edge of the wake is primarily due to the bulges and that the
velocities associated with these bulges correspond directly to the mixing jet portion of
the horseshoe structures. Thus, the turbulence intensity profiles, and their similarity as
the flow develops, depend on the bulges. This is consistent with the fact that Kopp et
al. (1995) were able to predict many aspects of the wake spread using a simple vortex
model and rapid distortion theory when a uniform, irrotational strain was applied to
a far wake. Thus, the propagation speed of the front (interface) should also depend
on the large-scale entrainment eddies.

As mentioned above, figure 5 has shown that the typical velocity fluctuations in the
bulges (at y∗ = 1.7) are positive for the average bulge. For larger bulges, which have
emerged further, the streamwise fluctuations are strongly negative, very energetic and
correspond to the mixing jet region of the horseshoe vortices, closer to those at y∗ = 1
in figure 1. Examining figure 4 in Vernet et al. (1999), typical velocity fluctuations
averaged over the entire mixing jet region are 0.5u′0 where u′0 is the streamwise
r.m.s. velocity at y∗ = 1 (which is close to the maximum value). This translates to
about 1.4u′, where u′ is the local r.m.s. velocity. For the present flow, the ratio u′0/u0

is about 0.3 and the average velocities associated with the mixing jets/bulges are
about 0.5u′0/u0 = 0.15u0. This is three times smaller than the entrainment velocity,
Ve = 0.46u0 determined by Sreenivasan et al. (1989) using equation (16) above for
self-preserving cylinder wakes.

It has typically been argued (e.g. Corrsin & Kistler 1995) that the turbulent
fluctuations close to the interface are generally of a similar magnitude to those in the
fully turbulent core of the flow. Thus, the conditional, turbulent velocity fluctuations
should be similar to the Kolmogorov velocity, vk . Sreenivasan et al. (1989) pointed
out that the ratio Ve/vk should be equal to the true (fractal) interface area divided by
the projected area,

At

Ap
=
( η
L

)2−D
, (17)

where D = 7/3 is approximately constant for a wide range of turbulent flows, but
varies slightly for ReD < 10 000. Estimating the dissipation via u′3/L, results in
η ∼ 0.6 mm and the area ratio is about 3.3. This could be considered remarkably
close to the velocity ratio, given the many experimental uncertainties involved in the
calculation.

7. Conclusions
Turbulent bulges and non-turbulent zones have been identified in the far-wake

region of a circular cylinder and related to the prototypical coherent structure in this
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region. It is observed that inflow occurs from the sides and downstream edge of the
three-dimensional bulges. The bulges, which protrude above y∗ = 1.0, are made up of
the top of the horsehoe vortex and an upstream straining region. The rear (upstream)
edge is shear-aligned, while the downstream edge is not, consistent with the work of
LaRue & Libby (1976). The bulge/coherent structure extracts energy from the newly
entrained fluid, helping to maintain it for long streamwise distances. Incoherent
turbulence is produced at the upstream end of the bulge in the shear-aligned straining
region.

The implications of the present work for the KH instability and Townsend’s growth–
decay cycle as models of entrainment have been examined. It was found that the
bulges conform to the overturning stage, but no evidence is found for the quiescent
periods at the beginning and end of the cycle. It is speculated that the structures
are maintained or frozen, for extremely long distances downstream, by the instability
mechanism, as implied by Wygnanski et al. (1986), with the perturbations required
for the instability mechanism being the structures themselves. In this way, the initially
shed vortices do not disappear completely, but rather evolve into the horseshoe
vortices in the far region. The growth of the wake, and its overall similarity, is due to
the emergence of these bulges from the fully turbulent core.
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